FT742-DM (DIREKTMONTAGE)

WINDSENSOR MIT AKUSTISCHER RESONANZ

IDEAL FÜR METEOROLOGIE

Der FT742 wird bei Direktmontage direkt auf ein 33,7 mm Rohr aufgesetzt und kann Windgeschwindigkeiten von bis zu 75 m/s erfassen. Damit eignet er sich ideal für meteorologische Anwendungen und zur Abschätzung der Windressourcen.

Aufgrund der geringen Größe ist er sehr robust und leicht zu beheizen, sogar bei niedriger Versorgungsspannung. Dank des Fehlens von schadanfälligen beweglichen Teilen ist der Sensor unempfindlich gegen Stöße und Vibration, leicht transportierbar und dauerhaft leistungsfähig. Das hartanodisierte Aluminiumgehäuse ist hoch beständig gegen Korrosion, Sand, Staub, Eis, Sonneneinstrahlung und Vogelschlag. Der Sensor erfüllt die Schutzart nach IP66, IP67 und IPX6K.

Typische Anwendungsgebiete für diesen Sensor sind: Wetterstationen, Wehrtechnik, Tornadoforschung, Monitoring von Kälte- und Klimatechnik, tragbare Wettermasten, Flughäfen, Häfen, Eisenbahnen, alpine Ferienorte, dynamische Positionierungssysteme, Bojen und Bergbau.

ABMESSUNGEN

A. Sensorhöhe	161 mm
B. Maximale Sensorbreite	56 mm
C. Maximale Breite E/A-Stecker	22.1 mm
D. Weite Montagerohr, außen	33.7 mm
E. Weite Montageflansch	45 mm

SPEZIFIKATIONEN AUF EINEN BLICK

WINDGESCHWINDIGKEIT

0-75 m/s

GEWICHT

380_g

DATENVERFÜGBARKEIT

>99.9_%

FT742-DM (DIREKTMONTAGE)

				Ш
			1	
	1000			Ш
		o O		
			$\begin{bmatrix} \ \end{bmatrix}$	
4	_	M		
ır		I R		
		Ó		

WINDGESCHWINDIGKEIT

Bereich		
Auflösung		
Genauigkeit	<u> </u>	±0.3 m/s (0-16 m,
		±2% (16-40 m/s)

WINDRICHTUNG

Bereich	.0-360°
Auflösung	.1°
Genauigkeit	4° RMS

SCHALLTEMPERATUR* Auflösung.....

Genauigkeit±2°C
Unter den folgenden Bedingungen:
Geschwindigkeitsbereich5m/s - 60m/s
Betriebsbereich20°C bis +60°C
Temperaturunterschied <10°C

zwischen der Lufttemperatur und der Temperatu des Sensors selbst

*liegt nur bei digitalen Sensoren vor

SENSORLEISTUNG

wiessprinzip	Akustische Resolianz (automatischer Ausgleich von Temperatur-, Druck- und Feuchtigkeitsschwankungen)
Maßeinheiten	Meter pro Sekunde (m/s), Kilometer pro Stunde (km/h) oder Knoten
Höhe	Betriebsbereich 0-4000 m
Temperaturbereich	40 °C bis +85 °C (Betriebs- und Lagertemperatur)

......IP66, IP67 und IPX6K

±4% (40-75 m/s)

STROMVERSORGUNG Versorgungsspannung......

Versorgungsstrom (Heizung ausgeschaltet)	.31 mA				
Versorgungsstrom (Heizung eingeschaltet)	Begrenzung auf 4 A	(Standardeinstellung)	, 6 A (max.) – per Software in Schrit	ten von 0,1 A ko	onfigurierbar.
	Der Stromverbrauch	n der Heizung hängt vo	om Energiebedarf zur Aufrechterhal	ltung der benutz	zerdefinierten

Solltemperatur ab. Die Leistungsaufnahme von Heizung und Sensor ist standardmäßig auf 99 W begrenzt.

..12 V to 30 V DC (Nennspannung 24 V DC). Unterstützt 12 V Batteriebetrieb bei reduzierter Heizkapazität

ALLGEMEINE TECHNISCHE DATEN

E/A-Stecker	5-polig (RS-485) oder 8-polig (4-20 r	nA)
Sensorgewicht	3800	

DIGITALER SENSOR

Schnittstelle	RS-485 (Halbduplex) – galvanisch getrennt von Stromversorgungsleitungen und Gehäuse
Format	ASCII-Datenformat, Abfragemodus oder kontinuierliche Datenausgabe, NMEA 0183
Datenaktualisierungsrate	

Fehlerbehandlung. Erkennt der Sensor einen ungültigen Messwert, wird ein Zeichen in der Windgeschwindigkeitsausgabe

eingefügt. Das Merkmal des Fehler-Merkers ist 1

ANALOGER SENSOR

Schilitistelle	4-20 IIIA – galvanische Tiennung von Stromversorgung und Genause
Format	Eine 4-20 mA-Stromschleife für Windgeschwindigkeit (unterschiedliche Skalierungsfaktoren verfügbar). Eine 4-20 mA
	Stromschleife für Windrichtung (Nullpunktwert als 4 mA oder 12 mA konfigurierbar). Beide analogen Kanäle werden

zehn Mal pro Sekunde aktualisiert. 4-20 mA-Konfigurationsport......Mithilfe dieses Ports kann der Nutzer die internen Einstellungen analoger Sensoren verändern und

diagnostische Versuche vornehmen. Diese Schnittstelle ist nicht zur ständigen Verbindung mit einem

Datenerfassungssystem oder einem anderen Gerät ausgelegt.

Fehlerbehandlung.....Erkennt der Sensor einen ungültigen Messwert, fallen die Stromschleifen für Windgeschwindigkeit und

Windrichtung auf den Standardwert von 1,4 mA (konfigurierbar auf bis zu 3,9 mA) ab.

EMV UND UMWELTPRÜFUNGEN

Für den FT742-DM gibt es 30 unterschiedliche Umweltprüfzertifikate, u.a. für Korrosion, Vereisung, Enteisung, Stoßfestigkeit, Hagel, Sturzsicherheit, ESD, Kurzschluss, Stromunterbrechung und EMV. Genauere Testergebnisse und vollständige Prüfberichte sind auf frage oder auf unserer Webseite erhältlich.

FT Technologies Ltd Sunbury House, Brooklands Close Sunbury on Thames, TW16 7DX, UK Tel: +44 (0)20 8943 0801 | info@fttechnologies.com

